

Products, Quotients, and Roots of Monomials

Goal: • Apply properties of exponents to monomials.

Vocabulary

Monomial:

A number, a variable, or a product of a number and one or more variables with whole number exponents

EXAMPLE 1 Finding Products of Monomials

a.
$$(-4x)(3x^{5}) = \boxed{-4} \circ x \circ \boxed{3} \circ \boxed{x^{5}}$$

$$= \boxed{-4} \circ \boxed{3} \circ x \circ \boxed{x^{5}}$$

$$= \boxed{-12} \circ x \circ \boxed{x^{5}}$$

$$= \boxed{-12} \circ x \circ \boxed{x^{5}}$$

Multiply coefficients.

b.
$$(6ab^4)^2 = 6^2 \circ \boxed{a^2} \circ (\boxed{b^4})^{\boxed{2}}$$

= $\boxed{36} \circ \boxed{a^2} \circ (\boxed{b^4})^{\boxed{2}}$
= $\boxed{36a^2b^8}$

EXAMPLE 2 **Finding Quotients of Monomials**

a.
$$\frac{10a^5b^2}{2a^3b^4} = \frac{10}{2} \cdot \boxed{\frac{a^5}{a^3}} \cdot \boxed{\frac{b^2}{b^4}}$$
$$= \boxed{5} \cdot \boxed{\frac{a^5}{a^3}} \cdot \boxed{\frac{b^2}{b^4}}$$
$$= 5 \cdot \boxed{a^2} \cdot \boxed{b^{-2}}$$
$$= \boxed{\frac{5a^2}{b^2}}$$

Guided Practice Simplify the expression.

1. (5n ³)(-4n ²)	2. (3ab ⁴)(9a ² b ⁵)	3. $(4x^2y)^3$
4. $\frac{2x^{10}}{6x^3}$	5. $\frac{9y^4z}{9yz^2}$	6. $\frac{5d^3}{f^3}$
Ü		

EXAMPLE 3 Using Properties of Exponents

Geometry The volume V of a cylindrical can with a height of 4 inches and radius r inches is given by $V = 4\pi r^2$.

Solution

Use a ratio to compare the volume of a can with radius 2r inches with the volume of a can with radius r inches.

$$\frac{\text{Radius } 2r \text{ inches}}{\text{Radius } r \text{ inches}} = \frac{4\pi (2r)^2}{4\pi r^2} \qquad \text{Write ratio.}$$

$$= \frac{4\pi \cdot 2^2 \cdot r^2}{4\pi r^2} \qquad \text{Power of a product property}$$

$$= \frac{16\pi r^2}{4\pi r^2} \qquad \text{Simplify numerator.}$$

$$= 4 \cdot \frac{\pi}{\pi} \cdot \frac{r^2}{r^2} \qquad \text{Divide coefficients.}$$

$$= 4 \qquad \text{Quotient of powers property}$$

Answer When the radius is doubled, the volume of the can is 4 times as great.

In this book, all variables in radical expressions represent

SQUARE ROOTS OF SQUARED EXPRESSIONS

Words If a is a nonnegative number or expression, then the square root

of a squared is a.

Algebra
$$\sqrt{a^2} = \begin{bmatrix} a \\ a \end{bmatrix}$$
, $a \ge 0$

Numbers
$$\sqrt{4^2} = \boxed{4}$$

EXAMPLE 4 Simplifying Square Roots

$$a. \sqrt{36z^2} = \sqrt{6^2 \cdot z^2}$$

Write 36 as $\begin{bmatrix} 6 \end{bmatrix}^2$.

$$= \sqrt{6^2} \circ \sqrt{z^2}$$

Product property of square roots

Simplify square roots of squared expressions.

b.
$$\sqrt{32m^2} = \sqrt{4^2 \cdot 2 \cdot m^2}$$

Factor greatest perfect square from 32.

$$= \sqrt{4^2} \cdot \sqrt{2^2} \cdot \sqrt{m^2}$$

Product property of square roots

$$= \boxed{4} \circ \boxed{\sqrt{2}} \circ \boxed{m}$$

Simplify square roots of squared expressions.

$$=$$
 $4m\sqrt{2}$

Commutative property

C.
$$\sqrt{a^4b^8} = \sqrt{(a^2)^2 \cdot (b^4)^2}$$

$$= \sqrt{(a^2)^2} \cdot \sqrt{(b^4)^2}$$

Write a^4 and b^8 as squares of expressions.

 $= \sqrt{(a^2)^2} \circ \sqrt{(b^4)^2}$ $= \sqrt{a^2b^4}$

Product property of square roots

Simplify square roots of squared expressions

Homework

In part (b), the final

expression is written as $4m\sqrt{2}$ rather than as

 $4\sqrt{2}$ m to make it clear that the variable is not

under the radical sign.

Guided Practice

Simplify the expression.

7.
$$\sqrt{25x^2}$$

8. $\sqrt{18k^2}$

9. $\sqrt{c^6d^2}$