

Exponent Properties Involving Quotients

Goal: Use exponent properties involving quotients.

Quotient of Powers Property

Words To divide two powers with the same nonzero base, subtract the exponent of the denominator from the exponent of the numerator.

Algebra
$$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$$
 Numbers $\frac{6^8}{6^6} = 6^{\frac{8-6}{6}} = 6^2$

EXAMPLE 1 Using the Quotient of Powers Property

Simplify the expression. Write your answer as a power.

a.
$$\frac{x^{11}}{x^3} = x^{\boxed{11-3}}$$
 Quotient of powers property $= \boxed{x^8}$ Subtract exponents.

b.
$$\frac{7^9}{7_6} = 7^{\frac{9-6}{}}$$
 Quotient of powers property
$$= \boxed{7^3}$$
 Subtract exponents.

c.
$$\frac{y^{-7}}{y^{-12}} = y^{-7 - (-12)}$$
 Quotient of powers property
$$= y^{-5}$$
 Subtract exponents.

WATCH OUT!

When using the quotient of powers property, always subtract the exponent of the denominator from the exponent of the numerator.

POWER OF A QUOTIENT PROPERTY

Words To find the power of a quotient, find the power of the numerator and the power of the denominator, then divide

Algebra
$$\left(\frac{a}{b}\right)^m = \boxed{\frac{a^m}{b^m}}, b \neq 0$$
 Words $\left(\frac{3}{4}\right)^5 = \boxed{\frac{3^5}{4^5}}$

EXAMPLE 2 Using the Power of a Quotient Property

a.
$$\left(\frac{2}{-9}\right)^2 = \frac{2^{\boxed{2}}}{(-9)^{\boxed{2}}}$$

Power of a quotient property

Evaluate powers.

b.
$$\left(\frac{6}{d}\right)^3 = \frac{6^{\boxed{3}}}{d^{\boxed{3}}}$$

Power of a quotient property

$$= \frac{216}{o^3}$$

Evaluate power.

$$\mathbf{c} \cdot \left(\frac{z}{4}\right)^{-4} = \frac{z^{-4}}{4^{-4}}$$

Power of a quotient property

$$=\frac{\boxed{\frac{1}{z^4}}}{\boxed{\frac{1}{4^4}}}$$

Definition of negative exponents

$$=\frac{1}{z^4} \bullet \boxed{\frac{4^4}{1}}$$

Multiply by reciprocal.

$$= \left| \frac{256}{z^4} \right|$$

Evaluate power and simplify.

Guided Practice Simplify the expression.

1.	10 ⁵
۳,	10 ⁴

2. $\frac{a^8}{a^4}$

3. $\frac{3^{-2}}{3^{-6}}$

4.
$$\left(\frac{5}{8}\right)^2$$

5. $(\frac{b}{2})^5$

6. $\left(\frac{7}{c}\right)^{-3}$

Need help with negative

exponents? see page 206 of your textbook

Dividing Numbers in Scientific Notation EXAMPLE 3

Population The population of Los Angeles, California in 2004 was about 3.85×10^6 . The population of Bridgeport, Connecticut in 2004 was about 1.40×10^{5} . The population of Los Angeles was about how many times the population of Bridgeport?

Solution

Find the ratio of the population of Los Angeles to the population of Bridgeport.

$$\frac{3.85 \times 10^{6}}{1.40 \times 10^{5}} = \frac{3.85}{1.40} \times \frac{10^{6}}{10^{5}}$$
Write quotient as product.
$$= 2.75 \times 10^{6-5}$$
Quotient of powers property
$$= 2.75 \times 10^{1}$$
Simplify exponent.
$$= 27.5$$
Write in standard form.

Answer In 2004, the population of Los Angeles was 27.5 times the population of Bridgeport.

PROPERTIES OF EXPONENTS

Let m and n be integers and let a and b be real numbers.

Property Definition Example

Negative Exponent
$$a^{-m} = \frac{1}{a^m}, a \neq 0$$
 $2^{-5} = \begin{bmatrix} \frac{1}{2^5} \end{bmatrix}$
Zero Exponent $a^0 = \begin{bmatrix} 1 \end{bmatrix}, a \neq 0$ $(-4)^0 = \begin{bmatrix} 1 \end{bmatrix}$

Product of Powers
$$a^m \circ a^n = \boxed{a^{m+n}}$$
 $8^5 \circ 8^4 = \boxed{8^9}$

Power of a Power
$$(a^m)^n = a^{mn}$$
 $(3^2)^5 = 3^{10}$
Power of a Product $(ab)^m = a^m \circ b^m$ $(6x)^2 = 6^2x^2$

Quotient of Powers
$$\frac{a^m}{a^n} = \boxed{a^{m-n}}$$
 $\frac{4^9}{4^3} = \boxed{4^6}$

Power of a Quotient $\left(\frac{a}{b}\right)^m = \boxed{\frac{a^m}{b^m}}, b \neq 0$ $\left(\frac{9}{10}\right)^3 = \boxed{\frac{9^3}{10^3}}$